If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9y^2+35y-4=0
a = 9; b = 35; c = -4;
Δ = b2-4ac
Δ = 352-4·9·(-4)
Δ = 1369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1369}=37$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-37}{2*9}=\frac{-72}{18} =-4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+37}{2*9}=\frac{2}{18} =1/9 $
| -3(2c)+4(5c)+11=88 | | -2+2y=-16 | | 3x+7=2-(4x-6) | | t+15=-16 | | 8/7=2x | | 4(5x-4/2)=32 | | 3x+24=2(x-1) | | p/9+(-14)=-16 | | (3x+6)=(2x+18) | | 7(x-2)-3(x+1)=23 | | -2x+4/6=3 | | 9-2x=-4(4+2x)+7 | | 8x−10+3x90+90=360 | | 123.95-x=-48.3 | | -37=-7x+4(x-4) | | 2x(x)+7x-3=0 | | 12d-(-6)=42 | | -10(10+v)=-150 | | -123.95-x=-48.3 | | 29=4y-10 | | 6y-12+2y=28 | | 8x−10=180 | | j/4+11=-4 | | 3p-12=2(p-1) | | 10(f-91)+5=85 | | 3x+8=8x-x | | -2 = f–13-2 | | 8x−10=360 | | -6-2y=-38 | | u+41=-8 | | 13x+17+1/2x-5=180 | | 99=6(q+12)+9 |